
How to create a simple ColdFire and Altera FPGA IOC

W. Eric Norum

September 22, 2008

Contents

1 Introduction 1

2 FPGA application 3

3 EPICS application 11

4 Remote Reset 17

5 Remote Reprogramming 19
5.1 uCDIMM ColdFire 5282 external flash . 19
5.2 Development kit configuration flash . 20

6 FPGA Programming Information Process Variable 27

A ledDriver.c 29

B Alternate Pinouts 33

i

Chapter 1

Introduction

This tutorial presents a step-by-step series of operations for creating a simple EPICS application for an Arcturus
uCDIMM ColdFire 5282 module attached to an Altera FPGA development kit. The following software and hardware
components are assumed to be in place:

• Arcturus uCDIMM ColdFire 5282

• RTEMS with m68k tool chain and uC5282 board-support package

• EPICS version R3.14.7 or greater with RTEMS-uC5282 target

• Altera FPGA development kit with at least two sets of expansion prototype connectors.

• ColdFire/FPGA adapter card

• Quartus version 6.0 or greater and Altera SOPC builder (this tutorial shows screen captures from Quartus ver-
sion 7.1)

• ColdFire bridge SOPC component

• Console reset detect Quartus component (optional)

This tutorial is written for use with an Altera Stratix II DSP development kit. The changes required for use with other
development kits are summarized in appendix B.

1 ICMS: APS 1189963

CHAPTER 1. INTRODUCTION

ICMS: APS 1189963 2

Chapter 2

FPGA application

1. Use the Quartus ”New Project Wizard” to create a new project. I called the project IOC_Example with same
name for the top-level entity:

3 ICMS: APS 1189963

CHAPTER 2. FPGA APPLICATION

2. Ensure that unused pins are treated as inputs (Assignments→Device. . . , Device & Pin Options, Unused Pins
tab). Not all the ColdFire signals are used by this example and Quartus helpfully grounds all the corresponding
pins if this step is omitted!

3. If you have not done so in a previous SOPC project, add the directory containing the ColdFire Bridge SOPC
component to the list of global libraries (Assignments→Settings→Libraries). Note that this list of directories
applies to SOPC Builder sessions in all projects. When the SOPC Builder is started and searches the direc-
tory containing the ColdFire Bridge SOPC component it will add the ColdFire Bridge component to the “APS
Component” list.

ICMS: APS 1189963 4

CHAPTER 2. FPGA APPLICATION

4. Start the SOPC Builder (Tools→SOPC Builder. . .) and create a new SOPC system. I called the SOPC system
IOC_ExampleSystem:

5. Set the SOPC Device and Clock parameters:

5 ICMS: APS 1189963

CHAPTER 2. FPGA APPLICATION

6. Double-click the ColdFire Bridge component to add it to the SOPC design:

7. Add an 8-bit port to the SOPC design:

ICMS: APS 1189963 6

CHAPTER 2. FPGA APPLICATION

Although the port will be used as an output port to drive the LEDs it is a good idea to provide an input port
as well so that the IOC can read back the value currently written to the output. This makes it “bumpless” IOC
reboot possible.

Connect the I/O port to the ColdFire bridge and give the port an address. The SOPC components and connections
should then be:

8. Click the Generate button to create the SOPC block.

9. Create the top-level entity design file. In the Quartus window select File→New, create a new Block Dia-
gram/Schematic File and save it as IOC_Example.

10. Double-click in the IOC_Example.bdf design window and add the IOC_ExampleSystem SOPC block
to the design:

7 ICMS: APS 1189963

CHAPTER 2. FPGA APPLICATION

11. Add I/O pins and assign them to the appropriate FPGA pins using the Assignment Editor. A list of the pin
assignments for several different development kits is included in appendix B. The complete system should then
appear as shown on the following page. Notice the the ouput port is connected back to its input as well as to the
LED pins.

12. Compile the project (you’ll see lots of warnings. . .) and load it into the FPGA.

ICMS: APS 1189963 8

CHAPTER 2. FPGA APPLICATION

9 ICMS: APS 1189963

CHAPTER 2. FPGA APPLICATION

ICMS: APS 1189963 10

Chapter 3

EPICS application

The steps listed below show how to create an example EPICS IOC application which uses the ASYN I/O environment
to control the LEDs on the FPGA card.

1. Create a new EPICS <TOP> directory and make a new application in it. You must specify the full path to the
makeBaseApp.pl script in your EPICS installation:

/· · ·/makeBaseApp.pl -t ioc ledDriver
/· · ·/makeBaseApp.pl -t ioc -i -a RTEMS-uC5282 ledDriver

2. Edit configure/CONFIG_SITE to enable only the RTEMS-uC5282 target:

CROSS_COMPILER_TARGET_ARCHS = RTEMS-uC5282

3. Edit configure/RELEASE to specify the location of ASYN support:

ASYN=/· · ·/modules/soft/asyn

4. Edit ledDriverApp/src/Makefile:

• Build only for RTEMS IOC targets (change the PROD_IOC line to PROD_RTEMS):

PROD_RTEMS = ledDriver

• Add asyn support:

ledDriver_DBD += asyn.dbd

• Add the asyn library to ledDriver_LIBS (before the EPICS_BASE_IOC_LIBS line which is already
there):

ledDriver_LIBS += asyn
ledDriver_LIBS += $(EPICS_BASE_IOC_LIBS)

• Add the FPGA device support dbd file (to be written in a following step):

ledDriver_DBD += ledDriver.dbd

• Add the FPGA device support source file (to be written in a following step):

11 ICMS: APS 1189963

CHAPTER 3. EPICS APPLICATION

ledDriver_SRCS += ledDriver.c

5. Edit ledDriverApp/Db/Makefile and add the line:

DB += ledDriver.db

6. Create the ledDriverApp/Db/ledDriver.db file referred to in the previous step. The file should contain:

record(longout,"leds") {
field(DTYP,"asynInt32")
field(OUT,"@asyn(ledDriver 0 0)")
field(PINI,"YES")

}

The three values in the OUT field are:

(a) The port name.

(b) The address (unused by this driver, but still needed)

(c) The timeout value, in seconds (unused by this driver, but still needed).

7. Create ledDriverApp/src/ledDriver.dbd with the contents:

registrar(ledDriverRegistrar)

8. Create ledDriverApp/src/ledDriver.c. A complete listing of is included in appendix A. Much of this file is
common to all ASYN drivers. The following points describe the lines of particular interest to this application.

12 When the SOPC Builder generates a system it can create a C header file describing the system components.
This header file can be included as shown in this comment. Unfortunately the version of Quartus current
at the time of writing does not make this process easy so I’ve just put in my own definition.

14 The SOPC address space appears in the ColdFire address space at the locations mapped to CS1 and CS2.
The RTEMS board-support package sets up these chip selects at locations 3000000016 and 3100000016,
respectively.

15 The ’+1’ is required because the ColdFire bus is 16-bit big-endian so the least-significant byte on the data
bus appears at an odd address.

21 Catch-all for standard ASYN interfaces.

61 The line of code that actually performs the output operation.

70 The line of code that reads back the current setting of the output port. By providing this method, and setting
the record PINI field to YES the IOC can reboot and initialize the record to the value currently in the FPGA.
This “bumpless’ reboot capability makes changes to the IOC code or databases much less intrusive.

78 More complete device support would probably do nothing more in this routine than register an iocsh com-
mand. The actual ASYN registration calls would then be called from the iocsh when invoked by the st.cmd
script. This would allow the port name and other parameters to be set from the st.cmd script rather than
being burned into the program.

87 The check for the existence of the I/O port.

93 The arguments to the registerPort method are:

(a) The port name.

ICMS: APS 1189963 12

CHAPTER 3. EPICS APPLICATION

(b) The port attributes. This driver is is not ’multi device’ and does not block.
(c) The autoconnect flag. This driver wants to be automatically reconnected.
(d) The priority of the I/O thread (unused for this driver).
(e) The stack size of the I/O thread (unused for this driver).

98-100 Associate our methods with the appropriate interfaces.

98-100 Associate our methods with the appropriate interfaces.

106 The asynUser structure was used only to provide a place for the initialize() method to return an error
message so it can now be freed.

9. Run make to compile the application.

10. Use the uCDIMM ColdFire 5282 setenv command to set environment variables as shown below. The exact
values will differ as appropriate for your network numbers and NFS server:

B$ setenv IPADDR0 www.xxx.yyy.56
B$ setenv HOSTNAME ioccoldfire2
B$ setenv BOOTFILE ucdimm.boot
B$ setenv NAMESERVER www.xxx.yyy.167
B$ setenv NETMASK 255.255.252.0
B$ setenv SERVER www.xxx.yyy.167
B$ setenv NFSMOUNT nfsserver:/export/homes:/home
B$ setenv CMDLINE /· · ·/FPGA_IOC_Example/EPICS/iocBoot/iocledDriver/st.cmd
B$ printenv
FACTORY=Arcturus Networks Inc.
REVISION=uC5282 Rev 1.0 4MB External Flash
SERIAL=X42B20ADC-0130C
CONSOLE=ttyS0
KERNEL=0:linux.bin
KERNEL_ARGS=root=/dev/rom0
HWADDR0=00:06:3B:00:53:0C
FW_VERSION=180001
_0=10000000:400000:RW
RAMIMAGE=yes
IPADDR0=www.xxx.yyy.56
CACHE=on
HOSTNAME=ioccoldfire2
BOOTFILE=ucdimm.boot
NAMESERVER=www.xxx.yyy.167
NETMASK=255.255.252.0
SERVER=www.xxx.yyy.167
NFSMOUNT=nfssrv:/export/homes:/home
CMDLINE=.../FPGA_IOC_Example/EPICS/iocBoot/iocledDriver/st.cmd

11. Download and execute the application:

• Start the TFTP server on the ColdFire:

B$ tftp
uCTFTP Console 1.0 is running ...

13 ICMS: APS 1189963

CHAPTER 3. EPICS APPLICATION

• Use the tftp program on your workstation to transfer the executable image to the ColdFire:

tftp> binary
tftp> connect www.xxx.yyy.56
tftp> put ledDriver.boot

If you have a version of curl which supports the TFTP protocol you can use ie instead:

curl -T ledDriver.boot tftp://www.xxx.yyy.56

• When the executable image has been transferred press the <ESC> key to the ColdFire to terminate the
TFTP server. Use the goram command to start the IOC:

Downloading..
B$ goram
Go from RAM!
Go from 0x40000
NTPSERVER environment variable missing -- using www.xxx.yyy.167

***** Initializing network *****
Startup after External reset.
fs1: Ethernet address: 00:06:3b:00:53:0c

***** Initializing NFS *****
This is RTEMS-RPCIOD Release $Name: $
($Id: tutorial.tex,v 1.30 2008/09/22 13:50:23 norume Exp $)

Till Straumann, Stanford/SLAC/SSRL 2002
See LICENSE file for licensing info
This is RTEMS-NFS $Name: $
($Id: tutorial.tex,v 1.30 2008/09/22 13:50:23 norume Exp $)

Till Straumann, Stanford/SLAC/SSRL 2002
See LICENSE file for licensing info
Trying to mount www.xxx.yyy.167:/export/homes on /home

***** Initializing NTP *****
***** Starting EPICS application *****
Example RTEMS startup script
You may have to change ledDriver to something else
everywhere it appears in this file
#< envPaths
Register all support components
dbLoadDatabase("../../dbd/ledDriver.dbd",0,0)
ledDriver_registerRecordDeviceDriver(pdbbase)
Load record instances
dbLoadRecords("../../db/ledDriver.db","user=norume")
iocInit()
Starting iocInit
##
EPICS IOC CORE built on Jul 25 2005
EPICS R3.14.7 $$Name: $$ $$Date: 2008/09/22 13:50:23 $$
##

ICMS: APS 1189963 14

CHAPTER 3. EPICS APPLICATION

iocInit: All initialization complete
Start any sequence programs
#seq sncledDriver,"user=norume"
ioccoldfire2>

15 ICMS: APS 1189963

CHAPTER 3. EPICS APPLICATION

ICMS: APS 1189963 16

Chapter 4

Remote Reset

All VME IOCs at the APS have a card which monitors the console received-data line and generates a system reset when
a particular sequence (three consecutive control-X, control-Y or control-Z characters or any consecutive combinations
of these characters) of characters is detected. It is quite easy to add this capability to the ColdFire/FPGA IOC.

1. Make a special serial line cable which will connect the serial received-data and ground lines of the ColdFire
console port to the 9-pin connector on the FPGA development kit. The following picture shows an example.
The 9-pin connector plugged in to the FPGA development kit has only two pins (received-data and ground).

2. Add the path to the directory containing the Console Reset Detect component to the list of application user
libraries:

17 ICMS: APS 1189963

CHAPTER 4. REMOTE RESET

3. Add the following components to the application top-level entity (IOC_Example.bdf). The ConsoleReset-
BaudDivider is a simple modulus-651 counter which sets the serial line speed at 9600 baud (100000000 ÷
(9600 × 16) = 651). If you’re using a different system clock or a different serial line speed you’ll have to
replace this component with your own counter.

4. Recompile the project and load it into the FPGA. You should now have the ability to remotely reset the ColdFire.

ICMS: APS 1189963 18

Chapter 5

Remote Reprogramming

This chapter describes the steps which add the ability to reprogram the flash memories on the the ucDIMM ColdFire
5282 module and the Altera FPGA development kits through EPICS channel access. This makes firmware updates of
installed systems much easier.

5.1 uCDIMM ColdFire 5282 external flash

The uCDIMM ColdFire 5282 module provides 4 Mbytes of flash memory which can be used to store the RTEMS/EPICS
executable and an in-memory file system providing the startup scripts and EPICS ’.db’ and ’.dbd’ files. Placing all
these files in the flash memory allows the embeded IOC to be truly standalone, cabable of starting and running even if
there is no connection to the network. The flash memory can be programmed with the bootstrap ’program’ command
or, once the steps in this section have been applied, through EPICS channel access. Programming through channel
access is convenient since it allows remote updates of multiple IOCs without the need to connect to each IOC console
individually.

1. Edit configure/RELEASE to specify the location of the MCF5282 support:

MCF5282=/· · ·/modules/instrument/mcf5282

2. Edit ledDriverApp/src/Makefile:

• Add mcf5282 support:

ledDriver_DBD += drvCFIFlashBurner.dbd

• Add the epicsMCF5282 library to ledDriver_LIBS (before the EPICS_BASE_IOC_LIBS and asyn
lines):

ledDriver_LIBS += epicsMCF5282
ledDriver_LIBS += asyn
ledDriver_LIBS += $(EPICS_BASE_IOC_LIBS)

3. Edit ledDriverApp/Db/Makefile and add the line:

DB_INSTALLS += $(MCF5282)/db/xxdevFlashBurner.db

19 ICMS: APS 1189963

5.2. DEVELOPMENT KIT CONFIGURATION FLASH CHAPTER 5. REMOTE REPROGRAMMING

4. Edit iocBoot/iocledDriver/st.cmd:

• Add a line to configure the uCDIMM ColdFire 5282 module flash memory device support. The arguments
to this command are the input device name, the base address of the flash memory, a boolean value where 0
means that the flash memory appears directly in the ColdFire address space, and the bit width of the flash
memory:

drvCFIFlashBurnerConfigure("bootFlash",0x10000000,0,16)

• Add a line to load a flash burner record. The INP value must match the first argument to the configuration
command:

dbLoadRecords("db/xxdevFlashBurner.db","P=led:,R=boot:,INP=bootFlash")

This will create a process variable named led:boot:FlashBurner.

5. Rebuild the application.

When the IOC starts up you should see something like the following when the flash memory burner is configured:

drvCFIFlashBurnerConfigure("bootFlash",0x10000000,0,16)
bootFlash: capacity 0x400000
bootFlash: erase block 0 size 0x2000 count 8 base 0
bootFlash: erase block 1 size 0x10000 count 63 base 0x10000
bootFlash: typical sector erase time 1.02 seconds (max 4.1 seconds)

To burn a new image into the uCDIMM ColdFire 5282 flash memory module use the flashBurner command from
the MCF5282 support area. The first argument to the command is the name of the flash burner PV in the ColdFire
IOC. The second argument is the name of the file who’s contents will be burned into the flash memory: a command
like:

/· · ·/modules/instrument/mcf5282/bin/hostArch/flashBurner \
led:boot:FlashBurner bin/RTEMS-uC5282/ledDriver.boot

5.2 Development kit configuration flash

Adding the capability to remotely reprogram the FPGA configuration flash memory requires the following steps. The
configuration flash memory can be connected directly to the ColdFire master but that eats up a large portion of the
available address space. By using the IndirectMaster component the configuration flash can connected to the ColdFire
master without consuming 16 MB of address space.

1. If you have not done so in a previous SOPC project, add the directory containing the Indirect Master SOPC
component to the list of directories which the SOPC Builder will search.

2. Add an IndirectMaster component to the SOPC system:

ICMS: APS 1189963 20

CHAPTER 5. REMOTE REPROGRAMMING 5.2. DEVELOPMENT KIT CONFIGURATION FLASH

3. Add an Avalon Tri-State Bridge to the system

4. Add an Flash Memory (Common Flash Interface) component to the system

21 ICMS: APS 1189963

5.2. DEVELOPMENT KIT CONFIGURATION FLASH CHAPTER 5. REMOTE REPROGRAMMING

5. Select the Flash Memory configuration that matches the development kit hardware

ICMS: APS 1189963 22

CHAPTER 5. REMOTE REPROGRAMMING 5.2. DEVELOPMENT KIT CONFIGURATION FLASH

6. Connect the Avalon Tri-State bridge to the Indirect Master

23 ICMS: APS 1189963

5.2. DEVELOPMENT KIT CONFIGURATION FLASH CHAPTER 5. REMOTE REPROGRAMMING

7. Set the IndirectMaster and Flash Memory addresses

8. Generate the SOPC system.

9. Update the IOC_Example block in the top-level design file. The signals to the flash memory should appear.

10. Add bidir and output pins to the IOC_Example flash memory signals.

11. Assign the pin numbers to the flash memory pins. The following table shows the flash memory pin assignments
for the Stratix II DSP development kit.

Signal Pin
flash_CEn AA32
flash_OEn AA31
flash_WEn W32
flash_A[0] AF30
flash_A[1] AF29
flash_A[2] AE30
flash_A[3] AE29
flash_A[4] AG32
flash_A[5] AG31
flash_A[6] AF32
flash_A[7] AF31

ICMS: APS 1189963 24

CHAPTER 5. REMOTE REPROGRAMMING 5.2. DEVELOPMENT KIT CONFIGURATION FLASH

flash_A[8] AE32
flash_A[9] AE31
flash_A[10] AD32
flash_A[11] AD31
flash_A[12] AB28
flash_A[13] AB27
flash_A[14] AC32
flash_A[15] AC31
flash_A[16] AB30
flash_A[17] AB29
flash_A[18] Y29
flash_A[19] Y28
flash_A[20] AA30
flash_A[21] AA29
flash_A[22] AB32
flash_A[23] AB31
flash_D[0] AH30
flash_D[1] AH29
flash_D[2] AJ32
flash_D[3] AJ31
flash_D[4] AG30
flash_D[5] AG29
flash_D[6] AH32
flash_D[7] AH31

12. Compile the system.

13. Edit iocBoot/iocledDriver/st.cmd:

• Add a line to configure the FPGA configuration module flash memory device support. The address is that
of the IndirectMaster address assigned in the SOPC system plus the offset of the FPGA addresses in the
ColdFire memory space. The width must match the development kit hardware flash memory:

drvCFIFlashBurnerConfigure("fpgaFlash",0x31ffffc0,1,8)

• Add a line to load a flash burner record. The INP value must match the first argument to the configuration
command:

dbLoadRecords("db/xxdevFlashBurner.db","P=led:,R=fpga:,INP=fpgaFlash")

This will create a process variable named led:fpga:FlashBurner.

14. Rebuild the application.

When the IOC starts up you should see something like the following when the flash memory burner is configured:

drvCFIFlashBurnerConfigure("fpgaFlash",0X31FFFFC0,1,8)
fpgaFlash: capacity 0x1000000
fpgaFlash: erase block 0 size 0x10000 count 256 base 0
fpgaFlash: typical sector erase time 1.02 seconds (max 16.4 seconds)

To burn a new image into the FPGA configuration flash memory the Quartus ’.sof’ file must be converted to a ’.hexout’
file with the quartus_cpf program:

25 ICMS: APS 1189963

5.2. DEVELOPMENT KIT CONFIGURATION FLASH CHAPTER 5. REMOTE REPROGRAMMING

quartus_cpf -c -a 0x00500000 IOC_Example.sof IOC_Example.hexout

The offset value shown above is appropriate for the configuration flash memory on the Stratix II DSP development kit.
A value of 0x00800000 should be used for the Stratix II NIOS development kit. The resuling ’.hexout’ file is burned
usingg the flashBurner command:

/· · ·/modules/instrument/mcf5282/bin/hostArch/flashBurner \
led:fpga:FlashBurner IOC_Example.hexout

ICMS: APS 1189963 26

Chapter 6

FPGA Programming Information Process
Variable

This chapter describes how to add an EPICS stringin record whose contents contain information about the date and
time that the FPGA firmware was compiled.
In SOPC builder create an 64-element 8-bit read-only on-chip memory component. Set the memory to be initialized
by VersionRom.mif. Connect the component to the ColdFire Master at an address in the VME A16/D16 space
(this space begins at SOPC address 0x1ff0000).
Edit the FPGA project configuration script (IOC_Example.qsf) and add a precompile script:

set_global_assignment -name PRE_FLOW_SCRIPT_FILE "quartus_sh:createVersionRomInitializer.tcl"

Place the following into createVersionRomInitializer.tcl:

proc createFile { name size contents } {
set fd [open "$name" w 0644]
puts $fd "-- $name -- $contents --"
puts $fd "DEPTH = $size;"
puts $fd "WIDTH = 8;"
puts $fd "ADDRESS_RADIX = DEC;"
puts $fd "DATA_RADIX = HEX;"
puts $fd "CONTENT"
puts $fd " BEGIN"
for {set i 0} {$i < $size} {incr i} {

if {$i < [string length $contents]} {
binary scan [string index $contents $i] H* hex
scan $hex "%x" hex

} else {
set hex 0

}
puts $fd [format "%6d : %2.2X;" $i $hex]

}
puts $fd " END;"
close $fd

}

set msg [clock format [clock seconds] -format "%Y-%m-%d %H:%M:%S"]

27 ICMS: APS 1189963

CHAPTER 6. FPGA PROGRAMMING INFORMATION PROCESS VARIABLE

createFile "VersionRom.mif" 64 "$msg"
catch { post_message "Created FPGA ROM initialization file." }

Of course you can change the msg to anything you want. Remember though, that an EPICS stringin record can hold
only 40 characters.
Once you’ve completed the above changes recompile the FPGA project. You should see an additional pass in the
progress window and some additional messages in the system status display window.
On the IOC end of things, perform the following steps. Some of these may have already been done earlier, so simply
ignore steps that you’ve already performed.

1. Edit configure/RELEASE to specify the location of the MCF5282 support:

MCF5282=/· · ·/modules/instrument/mcf5282

2. Edit ledDriverApp/src/Makefile:

• Add FPGA programming information device support:

ledDriver_DBD += fpgaProgrammingInfo.dbd

• Add the epicsMCF5282 library to ledDriver_LIBS (before the EPICS_BASE_IOC_LIBS and asyn
lines):

ledDriver_LIBS += epicsMCF5282
ledDriver_LIBS += asyn
ledDriver_LIBS += $(EPICS_BASE_IOC_LIBS)

3. Edit ledDriverApp/Db/Makefile and add the line:

DB_INSTALLS += $(MCF5282)/db/fpgaProgrammingInfo.db

4. Edit iocBoot/iocledDriver/st.cmd:

• Add a line to configure the uCDIMM FPGA programming information device support. The arguments to
this command are the input device name, the base address of the information memory and the length of
the information memory (by default 64 bytes):

devFpgaInfoConfigure("fpgaInfo",0x3800)

• Add a line to load an FPGA programming information record. The PORT value must match the first
argument to the configuration command:

dbLoadRecords("db/fpgaProgrammingInfo.db","P=$(P),R=,PORT=fpgaInfo")

This will create a process variable named led:FPGACompileTimeSI.

5. Rebuild the application.

ICMS: APS 1189963 28

Appendix A

ledDriver.c

1 /*
2 * ASYN Int32 driver for simple FPGA application
3 */
4 #include <epicsStdio.h>
5 #include <epicsExport.h>
6 #include <cantProceed.h>
7
8 #include <asynDriver.h>
9 #include <asynStandardInterfaces.h>

10 #include <devLib.h>
11
12 /*#include "SOPC.h" /* Symbolic link to SOPC-generated system header file */
13 #define PIO_BASE 0x000000
14 #define AVALON_BASE 0x30000000 /* Base of Avalon space in ColdFire space */
15 #define OPTR ((epicsUInt8 *)(AVALON_BASE+PIO_BASE+1))
16
17 /*
18 * Driver private storage
19 */
20 typedef struct drvPvt {
21 asynStandardInterfaces asynStandardInterfaces;
22 const char *portName;
23 volatile epicsUInt8 *optr;
24 } drvPvt;
25
26 /*
27 * asynCommon methods
28 */
29 static void
30 report(void *pvt, FILE *fp, int details)
31 {
32 drvPvt *pdrvPvt = (drvPvt *)pvt;
33

29 ICMS: APS 1189963

APPENDIX A. LEDDRIVER.C

34 if (details)
35 fprintf(fp, "%s: %#x@%p\n", pdrvPvt->portName, *pdrvPvt->optr, pdrvPvt->optr);
36 }
37
38 static asynStatus
39 connect(void *pvt, asynUser *pasynUser)
40 {
41 pasynManager->exceptionConnect(pasynUser);
42 return asynSuccess;
43 }
44
45 static asynStatus
46 disconnect(void *pvt, asynUser *pasynUser)
47 {
48 pasynManager->exceptionDisconnect(pasynUser);
49 return asynSuccess;
50 }
51 static asynCommon commonMethods = { report, connect, disconnect };
52
53 /*
54 * asynInt32 methods
55 */
56 static asynStatus
57 int32Write(void *pvt, asynUser *pasynUser, epicsInt32 value)
58 {
59 drvPvt *pdrvPvt = (drvPvt *)pvt;
60
61 *pdrvPvt->optr = value;
62 return asynSuccess;
63 }
64
65 static asynStatus
66 int32Read(void *pvt, asynUser *pasynUser, epicsInt32 *value)
67 {
68 drvPvt *pdrvPvt = (drvPvt *)pvt;
69
70 *value = *pdrvPvt->optr;
71 return asynSuccess;
72 }
73 static asynInt32 int32Methods = { int32Write, int32Read };
74
75 /*
76 * Register ourself with ASYN
77 */
78 static void ledDriverRegistrar(void)
79 {
80 drvPvt *pdrvPvt;
81 asynStatus status;

ICMS: APS 1189963 30

APPENDIX A. LEDDRIVER.C

82 const char *portName = "ledDriver";
83 asynUser *pasynUser = pasynManager->createAsynUser(0, 0);
84 epicsUInt8 dummy;
85
86 pdrvPvt = callocMustSucceed(sizeof(drvPvt), 1, portName);
87 if (devWriteProbe(sizeof(dummy), pdrvPvt->optr, &dummy) != 0) {
88 printf("ledDriver: memory probe failed\n");
89 return;
90 }
91 pdrvPvt->portName = portName;
92 pdrvPvt->optr = OPTR;
93 status = pasynManager->registerPort(portName, 0, 1, 0, 0);
94 if(status != asynSuccess) {
95 printf("registerDriver failed\n");
96 return;
97 }
98 pdrvPvt->asynStandardInterfaces.common.pinterface = &commonMethods;
99 pdrvPvt->asynStandardInterfaces.int32.pinterface = &int32Methods;

100 status = pasynStandardInterfacesBase->initialize(portName,
101 &pdrvPvt->asynStandardInterfaces, pasynUser, pdrvPvt);
102 if (status != asynSuccess) {
103 printf("Can’t register interfaces: %s\n", pasynUser->errorMessage);
104 return;
105 }
106 pasynManager->freeAsynUser(pasynUser);
107 }
108 epicsExportRegistrar(ledDriverRegistrar);

31 ICMS: APS 1189963

APPENDIX A. LEDDRIVER.C

ICMS: APS 1189963 32

Appendix B

Alternate Pinouts

The information in this tutorial applies to several Altera development kits, including:

1. Stratix II DSP development kit(EP2S60), 100 MHz clock.

2. “Old” (Non-PMC) Stratix II NIOS development kit (EP2S60), “BoardClock100” input is a 50 MHz clock. The
Compact Flash socket on this kit shares many signals with the expansion headers to which the ColdFire module
is connected. Remove the Compact Flash card from the socket before connecting the ColdFire module to the
development kit.

3. Cyclone II NIOS development kit (EP2C35), “BoardClock100” input is a 50 MHz clock, expansion prototype
connectors require extensions to clear tall components on development kit.

4. “New” (PMC) Stratix II NIOS development kit (EP2S60), “BoardClock100” input is a 50 MHz clock. The
Compact Flash socket on this kit shares many signals with the expansion headers to which the ColdFire module
is connected. Remove the Compact Flash card from the socket before connecting the ColdFire module to the
development kit.

The pin assignments for each of these kits are presented in the following table.

Signal 1 2 3 4
BoardClock100 A16 AF15 N2 B13
ColdFireA[1] Proto1 IO1 R30 J9 F24 C2
ColdFireA[2] Proto1 IO2 P32 F8 F23 D2
ColdFireA[3] Proto1 IO3 P31 A3 J21 D3
ColdFireA[4] Proto1 IO4 M32 C4 J20 E1
ColdFireA[5] Proto1 IO5 M31 C3 F25 E2
ColdFireA[6] Proto1 IO6 N31 C5 F26 E3
ColdFireA[7] Proto1 IO7 N30 K10 N18 E4
ColdFireA[8] Proto1 IO8 L32 H9 P18 F1
ColdFireA[9] Proto1 IO9 L31 G9 G23 F2
ColdFireA[10] Proto1 IO10 M30 A5 G24 F3
ColdFireA[11] Proto1 IO11 M29 B5 G25 F4
ColdFireA[12] Proto1 IO12 N29 D6 G26 G3

33 ICMS: APS 1189963

APPENDIX B. ALTERNATE PINOUTS

ColdFireA[13] Proto1 IO13 N28 A6 H23 G4
ColdFireA[14] Proto1 IO14 L30 H10 H24 H3
ColdFireA[15] Proto1 IO15 L29 K11 J23 H4
ColdFireA[16] Proto1 IO16 K32 F10 J24 J3
ColdFireA[17] Proto1 IO17 K31 A7 H25 J4
ColdFireA[18] Proto1 IO18 K30 C7 H26 G1
ColdFireA[19] Proto1 IO19 K29 D7 K18 G2
ColdFireA[20] Proto1 IO20 J32 A8 K19 H1
ColdFireA[21] Proto1 IO21 J31 G10 K23 H2
ColdFireA[22] Proto1 IO22 H32 J11 K24 K3
ColdFireA[23] Proto1 IO23 H31 F11 J25 K4
ColdFireBS2n Proto2 IO23 U27 A24 AD19 AC3
ColdFireBS3n Proto2 IO24 U23 B24 AC19 AD1
ColdFireCLKOUT Proto1 CLKOUT T32 AC14 N26 R26
ColdFireCS1n Proto2 IO20 V29 D18 AC20 AB3
ColdFireCS2n Proto2 IO19 V23 J18 AB20 AA4
ColdFireD[16] Proto2 IO0 AC27 H15 AE241 T2
ColdFireD[17] Proto2 IO1 AC26 J15 T21 T3
ColdFireD[18] Proto2 IO2 AD27 C16 V22 U1
ColdFireD[19] Proto2 IO3 AD26 A17 AF23 U2
ColdFireD[20] Proto2 IO4 Y23 C17 AE23 V1
ColdFireD[21] Proto2 IO5 Y22 A18 AC22 V2
ColdFireD[22] Proto2 IO6 Y25 F17 AB21 W1
ColdFireD[23] Proto2 IO7 Y24 K16 AD23 W2
ColdFireD[24] Proto2 IO8 AA27 G17 AD22 Y1
ColdFireD[25] Proto2 IO9 AA26 A19 AC21 Y2
ColdFireD[26] Proto2 IO10 Y27 C18 AD21 AA1
ColdFireD[27] Proto2 IO11 Y26 C19 AF22 AA2
ColdFireD[28] Proto2 IO12 W25 A20 AE22 AB1
ColdFireD[29] Proto2 IO13 W24 J17 V18 AB2
ColdFireD[30] Proto2 IO14 W27 A21 W19 W3
ColdFireD[31] Proto2 IO15 W26 C20 U17 W4
ColdFireIRQ1n Proto2 IO17 W28 A22 AF21 Y4
ColdFireOEn Proto2 IO25 U22 K17 AA17 AD2
ColdFireRSTIn Proto2 IO28 M22 H18 V17 W10
ColdFireRSTOn Proto2 IO27 M23 J14 W17 W9
ColdFireRpWn Proto2 IO22 U28 B22 AE20 AC2
ColdFireTAn Proto2 IO16 W29 C21 U18 Y3
ColdFireTEAn Proto2 IO26 L25 H17 AA18 Y7
ColdFireTSn Proto2 IO21 V28 C22 AF20 AB4
LEDS[0] B4 AD26 AC10 W15
LEDS[1] D5 AD25 W11 V14
LEDS[2] E5 AC25 W12 AD17

ICMS: APS 1189963 34

APPENDIX B. ALTERNATE PINOUTS

LEDS[3] A4 AC24 AE8 AA17
LEDS[4] A5 AB24 AF8 V16
LEDS[5] D6 AB23 AE7 AB17
LEDS[6] C6 AB26 AF7 AD18
LEDS[7] A6 AB25 AA11 V17
SerialIn L16 H7 AB15 AD26

1. Pin AE24 on the Cyclone II kit is a dual-purpose pin and needs to be configured as Assignments→Device. . . ,
Device & Pin Options, Dual-Purpose Pins tab): Change nCEO from ”Use as programming pin” to ”Use as
regular IO”.

35 ICMS: APS 1189963

